

Helios Energy LLC Tianeti St. 49 Tbilisi Georgia

Contact person: Ketevan Gogishvili Phone: +995598117679 E-Mail: ketevan@helios.ge

Project Name: Sheraton PV Plant - Rooftop

13-Apr-23

Your PV system from Helios Energy LLC

Address of Installation

01.17.01.125.001

Project Description: Rooftop PV Plant - Level 12

Project Overview

Figure: Overview Image, 3D Design

PV System

3D, Grid-connected PV System

•	
Climate Data	Tbilisi, GEO (1991 - 2010)
PV Generator Output	24.9 kWp
PV Generator Surface	117.2 m ²
Number of PV Modules	60
Number of Inverters	2

Helios Energy

Helios Energy LLC

The yield

The yield	
PV Generator Energy (AC grid)	27,265 kWh
Grid Feed-in	27,265 kWh
Down-regulation at Feed-in Point	0 kWh
Own Power Consumption	0.0 %
Solar Fraction	0.0 %
Spec. Annual Yield	1,092.79 kWh/kWp
Performance Ratio (PR)	79.1 %
Yield Reduction due to Shading	14.2 %/Year
CO ₂ Emissions avoided	12,789 kg/year

The results have been calculated with a mathematical model calculation from Valentin Software GmbH (PV*SOL algorithms). The actual yields from the solar power system may differ as a result of weather variations, the efficiency of the modules and inverter, and other factors.

Set-up of the System

Overview

System Data	
Type of System	3D, Grid-connected PV System
Start of Operation	08-Sep-22
Climate Data	

Climate Data	
Location	Tbilisi, GEO (1991 - 2010)
Resolution of the data	1 h
Simulation models used:	
- Diffuse Irradiation onto Horizontal Plane	Hofmann
- Irradiance onto tilted surface	Hay & Davies

Module Areas

1. Module Area - Arbitrary Building 08-Mounting Surface South

PV Generator, 1. Module Area - Arbitrary Building 08-Mounting Surface South

Name	Arbitrary Building 08-Mounting
	Surface South
PV Modules	22 x JAM54S30-415/MR (v4)
Manufacturer	JA Solar Holdings Co., Ltd.
Inclination	15 °
Orientation	South 179°
Installation Type	Mounted - Roof
PV Generator Surface	43.0 m ²

Figure: 1. Module Area - Arbitrary Building 08-Mounting Surface South

Degradation of Module, 1. Module Area - Arbitrary Building 08-Mounting Surface South	
Remaining power (power output) after 1 year	98 %
Remaining power (power output) after 25 years	84.8 %

Figure: Degradation of Module, 1. Module Area - Arbitrary Building 08-Mounting Surface South

2. Module Area - Arbitrary Building 09-Mounting Surface East

PV Generator, 2. Module Area - Arbitrary Building 09-Mounting Surface East

Name	Arbitrary Building 09-Mounting
	Surface East
PV Modules	12 x JAM54S30-415/MR (v4)
Manufacturer	JA Solar Holdings Co., Ltd.
Inclination	15 °
Orientation	South 179 °
Installation Type	Mounted - Roof
PV Generator Surface	23.4 m ²

Figure: 2. Module Area - Arbitrary Building 09-Mounting Surface East

Degradation of Module, 2. Module Area - Arbitrary Building 09-Mounting Surface East	
Remaining power (power output) after 1 year	98 %
Remaining power (power output) after 25 years	84.8 %

Figure: Degradation of Module, 2. Module Area - Arbitrary Building 09-Mounting Surface East

3. Module Area - Arbitrary Building 03-Mounting Surface Northeast

PV Generator, 3. Module Area - Arbitrary Building 03-Mounting Surface Northeast

Name	Arbitrary Building 03-Mounting
	Surface Northeast
PV Modules	26 x JAM54S30-415/MR (v4)
Manufacturer	JA Solar Holdings Co., Ltd.
Inclination	15 °
Orientation	South 180 °
Installation Type	Mounted - Roof
PV Generator Surface	50.8 m ²

Figure: 3. Module Area - Arbitrary Building 03-Mounting Surface Northeast

Degradation of Module, 3. Module Area - Arbitrary Building 03-Mounting Surface Northeast	
Remaining power (power output) after 1 year	98 %
Remaining power (power output) after 25 years	84.8 %

Figure: Degradation of Module, 3. Module Area - Arbitrary Building 03-Mounting Surface Northeast

Horizon Line, 3D Design

Figure: Horizon (3D Design)

Inverter configuration

Configuration 1

Module Areas	Arbitrary Building 08-Mounting Surface South + Arbitrary
	Building 09-Mounting Surface East + Arbitrary Building 03-
	Mounting Surface Northeast
Inverter 1	
Model	SUN2000 12KTL-M2 (v1)
Manufacturer	Huawei Technologies
Quantity	1
Sizing Factor	117.6 %
Configuration	MPP 1: 1 x 22
	MPP 2: 1 x 12
Inverter 2	
Model	SUN2000MA-10KTL-M1(High Current Version-400Vac) (v2)
Manufacturer	Huawei Technologies
Quantity	1
Sizing Factor	107.9 %
Configuration	MPP 1: 1 x 13
	MPP 2: 1 x 13

AC Mains

AC Mains	
Number of Phases	3
Mains Voltage (1-phase)	230 V
Displacement Power Factor (cos phi)	+/- 1

Simulation Results

Results Total System

PV System	
PV Generator Output	24.9 kWp
Spec. Annual Yield	1,092.79 kWh/kWp
Performance Ratio (PR)	79.1 %
Yield Reduction due to Shading	14.2 %/Year
Grid Feed-in	27,265 kWh/Year
Grid Feed-in in the first year (incl. module degradation)	26,905 kWh/Year
Standby Consumption (Inverter)	55 kWh/Year
CO ₂ Emissions avoided	12,789 kg/year

Figure: Energy Flow Graph

Helios Energy LLC

Results per Module Area

Arbitrary Building 08-Mounting Surface South

PV Generator Output	9.13 kWp
PV Generator Surface	42.96 m ²
Global Radiation at the Module	1345.90 kWh/m²
Global Radiation on Module without reflection	1373.34 kWh/m²
Performance Ratio (PR)	73.06 %
PV Generator Energy (AC grid)	9160.82 kWh/Year
Spec. Annual Yield	1003.38 kWh/kWp

Arbitrary Building 09-Mounting Surface East

PV Generator Output	4.98 kWp
PV Generator Surface	23.43 m ²
Global Radiation at the Module	1356.17 kWh/m²
Global Radiation on Module without reflection	1383.82 kWh/m²
Performance Ratio (PR)	75.56 %
PV Generator Energy (AC grid)	5207.25 kWh/Year
Spec. Annual Yield	1045.63 kWh/kWp

Arbitrary Building 03-Mounting Surface Northeast

PV Generator Output 10.79	kWp
PV Generator Surface 50.77	m²
Global Radiation at the Module 1361.27	kWh/m²
Global Radiation on Module without reflection1389.02	kWh/m²
Performance Ratio (PR) 86.05	%
PV Generator Energy (AC grid) 12897.23	kWh/Year
Spec. Annual Yield 1195.29	kWh/kWp

PV System Energy Balance

PV System Energy Balance			
Global radiation - horizontal	1,334.70	kWh/m²	
Deviation from standard spectrum	-13.35	kWh/m²	-1.00 %
Ground Reflection (Albedo)	4.50	kWh/m²	0.34 %
Orientation and inclination of the module surface	89.38	kWh/m²	6.74 %
Module-independent shading	-33.01	kWh/m²	-2.33 %
Reflection on the Module Interface	-27.62	kWh/m²	-2.00 %
Global Radiation at the Module	1,354.61	kWh/m²	
	1,354.61	kWh/m²	
	x 117.165	m²	
	= 158,712.89	kWh	
Global PV Radiation	158,712.89	kWh	
Soiling	0.00	kWh	0.00 %
STC Conversion (Rated Efficiency of Module 21.25 %)	-124,979.87	kWh	-78.75 %
Rated PV Energy	33,733.02	kWh	
Module-specific Partial Shading	-3,251.81	kWh	-9.64 %
Low-light performance	-72.63	kWh	-0.24 %
Deviation from the nominal module temperature	-889.87	kWh	-2.93 %
Diodes	-104.00	kWh	-0.35 %
Mismatch (Manufacturer Information)	-588.29	kWh	-2.00 %
Mismatch (Configuration/Shading)	-410.84	kWh	-1.43 %
String Cable	-134.05	kWh	-0.47 %
PV Energy (DC) without inverter down-regulation	28,281.53	kWh	
Failing to reach the DC start output	-5.76	kWh	-0.02 %
Down-regulation on account of the MPP Voltage Range	-105.36	kWh	-0.37 %
Down-regulation on account of the max. DC Current	-0.73	kWh	0.00 %
Down-regulation on account of the max. DC Power	0.00	kWh	0.00 %
Down-regulation on account of the max. AC Power/cos phi	-5.01	kWh	-0.02 %
MPP Matching	-14.15	kWh	-0.05 %
PV energy (DC)	28,150.52	kWh	
Energy at the Inverter Input	28,150.52	kWh	
Input voltage deviates from rated voltage	-237.92	kWh	-0.85 %
DC/AC Conversion	-602.75	kWh	-2.16 %
Standby Consumption (Inverter)	-54.76	kWh	-0.20 %
AC cables	-44.56	kWh	-0.16 %
PV energy (AC) minus standby use	27,210.54	kWh	
PV Generator Energy (AC grid)	27,265,29	kWh	

Plans and parts list Circuit Diagram

Dimensioning Plan

Figure: Arbitrary Building 09-Mounting Surface East

Helios Energy LLC

Figure: Arbitrary Building 08-Mounting Surface South

Helios Energy LLC

Figure: Arbitrary Building 03-Mounting Surface Northeast

Helios Energy LLC

String Plan

Figure: Arbitrary Building 08-Mounting Surface South

Helios Energy LLC

Figure: Arbitrary Building 09-Mounting Surface East

Helios Energy

Helios Energy LLC

Figure: Arbitrary Building 03-Mounting Surface Northeast

Parts list

Parts list

#	Туре	Item number	Manufacturer	Name	Quantity	Unit
1	PV Module		JA Solar Holdings Co., Ltd.	JAM54S30-415/MR	60	Piece
2	Inverter		Huawei Technologies	SUN2000 12KTL-M2	1	Piece
3	Inverter		Huawei Technologies	SUN2000MA-10KTL- M1(High Current Version-400Vac)	1	Piece
4	Cable			AC cables 3-phase 6 mm ² Copper	30	m
5	Cable			String Cable 6 mm ² Copper	374	m
6	Components			Feed-in Meter	1	Piece
7	Components			Circuit Breaker B 32A	2	Piece

Screenshots, 3D Design Environment

Figure: Screenshot04

Figure: Screenshot05

Helios Energy LLC

Figure: Screenshot06

Shading

Figure: Screenshot01

Helios Energy LLC

Figure: Screenshot02

Figure: Screenshot03

